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A B S T R A C T   

Climate change is expected to pose major challenges to viticulture. The projected increase in temperature in the 
Mediterranean region due to climate change is likely to influence the timing of grapevine phenological stages. 
This study developed and validated a phenological model, from budbreak to maturation phenological stages, 
based on the growing degree days for the Sultana grapevine cultivar on Crete Island, Greece, and used the model 
to assess potential changes in future phenology timing employing different climate change scenarios. A dataset of 
unpublished phenological observations from 20 locations spanning four decades was used to validate the 
phenological model. The root mean squared difference (RMSD) of the calibration-validation procedure was 
estimated between 5.4 and 11.5 days, depending on the phenological stage. The model outperformed for the 
flowering and maturity stages. The highest RMSD was found for the shoot development stages. Projections 
determined an earlier occurrence of the different phenological stages. Near future climate (2020–2060) pro-
jections indicate budbreak advancement by 7 to 8 days and maturity by 4 to 5 days on average. For the far future 
(2060–2100), the respective changes are 11 to 18 and 7 to 9 days earlier. Discussion on the underlying uncer-
tainty sources is provided.   

1. Introduction 

Due to its impacts on crop quality and yield, climate is a key factor 
determining the economic sustainability of agricultural production. 
Climate is a determinant factor in agricultural production systems 
defining crop suitability, influencing yield and quality, and conse-
quently ruling economic sustainability. Many climate scenarios predict 
changes to future temperature and precipitation regimes, including 
more frequent extreme heat and drought episodes, that are likely to 
strongly affect many agricultural regions (Rosenzweig et al., 2014). The 
Mediterranean region is considered a climate change hot spot (Giorgi 
and Lionello, 2008; Thiébault et al., 2016; Tramblay et al., 2020). 

Studies have consistently reported that climate change is expected to 
increase summer temperatures, especially in the southern parts of 
Europe, by the end of the 21st century. Projections for the south-eastern 
Mediterranean region indicate that the temperature is likely to increase 
by between 1.7 ◦C and 2.5 ◦C for the representative concentration 

pathway (RCP) 4.5 and between 3.5 ◦C and 5.0 ◦C for RCP8.5 (Zittis 
et al., 2019). These changes are expected to affect plant phenology (De 
Ollas et al., 2019), the duration of the growing season and the quies-
cence period and potentially reduce crop productivity and degrade 
quality (Gordo and Sanz, 2010). 

Viticulture has a very high economic importance for Mediterranean 
Europe as a source of a variety of products, including wines and spirits, 
table grapes, raisins and fresh grape juice. The annual developmental 
cycle of the grapevine consists of a dormant period and a growth period, 
which is further divided into four phases reflecting the concurrent 
development of vegetative and reproductive organs of the plant. The 
first phase extends from endodormancy, followed by ecodormancy, to 
budburst. The second phase encompasses the period from budburst to 
flowering when vegetative organs and floral structures are developing. 
The third phase lasts from flowering to veraison. During this phase, the 
plant actively accumulates biomass, and the berries grow in size through 
cell division. In the last phase, from veraison to harvest, vegetative 
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growth slows, and berries accumulate sugars and ripen. Three scales are 
typically used to describe the succession of vine growth stages. These are 
the Baggiolini scale (Baggiolini, 1952; Baillod and Baggiolini, 1993), the 
Eichhorn and Lorenz phenological (ELP) scale (Eichhorn and Lorenz, 
1977) and the Biologische Bundesanstalt, Bundessortenamt und 
CHemische Industrie (BBCH) scale (Lorenz et al., 1994). Each scale was 
designed to serve specific needs, exhibiting different advantages and 
shortcomings. The Baggiolini scale, for example, is a categorical scale 
that is easy to interpret but difficult to simulate by a statistical model. 
The BBCH system is used as a code to describe the phenological stages of 
various monocot and dicot plants. However, it tends to fragment the 
development stages rather than provide a continuous flow of phenology 
stages (Coombe, 1995). The Eichhorn and Lorenz Phenological (ELP) 
scale, which can be accurately reproduced by mathematical models 
(Fernández-González et al., 2013; Verdugo-Vásquez et al., 2017), is 
designed specifically for grapevine phenology and covers all growth 
stages from winter bud (ELP = 1) to the end of leaf fall (ELP = 47). 

Climatic factors play a vital role in the terroir of a grapevine growing 
region, as they strongly control canopy microclimate, plant growth and 
physiology, yield, and grape berry attributes (Doupis et al., 2020; Jones 
et al., 2005; Koufos et al., 2018). Air temperature is among the most 
influential meteorological qualities controlling grapevine development 
(Santibáñez et al., 2014). Increasing temperatures have been shown to 
seriously affect vine phenology (Scranton and Amarasekare, 2017). 
Urhausen et al. (2011) correlated a trend towards earlier budburst and 
flowering in Upper Moselle, Germany, with increasing temperatures in 
the region. Along the same lines, Tomasi et al. (2011) studied vine 
phenological data collected between 1964 and 2009 in the Veneto Re-
gion of Italy and found that the onset of events, such as bloom, veraison, 
and harvest, occurred between 13 and 19 days earlier at the end of the 
study period. A more extensive study by García de Cortázar-Atauri et al. 
(2017), who recorded the phenological patterns of 43 vine cultivars in 
France, found that the timing of budbreak, flowering and veraison 
trended earlier during the last 30 years. Ruml et al. (2016) analyzed the 
onset dates of four major phenological stages, along with the corre-
sponding growth intervals between them, for 20 wine grape cultivars in 
Serbia. Their results indicated that all phenological stages, except bud-
burst, were advanced by − 0.4, − 0.7 and − 0.6 days/year for flowering, 
veraison and harvest, respectively. 

Additionally, numerous studies suggest that predicted changes in 
climate variables will further influence the viticulture sector worldwide. 
Ramos and Jones (2018) analyzed the potential changes in the 
phenology of the Cabernet Sauvignon cultivar under RCP4.5 and RCP8.5 
in different future periods. They quantified the timing of vine phenology 
stages under warming conditions using growing degree days (GDDs) and 
found that veraison is expected to advance by 24 and 36 days by 2070 
for RCP4.5 and RCP8.5, respectively. Teslić et al. (2019) reported that 
the major wine-producing region of Emilia-Romagna may become too 
hot for grape production by the end of the century according to RCP8.5. 
Similarly, Omazić et al. (2020) studied different bioclimatic indices 
using regional climate models (RCMs) for Croatia and found that further 
temperature increases and a lack of precipitation events in the area are 
likely to result in earlier harvests. They also estimated that some of the 
existing zones and areas where grapevines are grown under favorable 
climatic conditions will not be suitable for this crop in the future. 

Throughout the growing season, grapevines undergo a great number 
of changes in terms of morphology and physiology. While some grape-
vine varieties seem to have a fairly similar phenological pattern, they 
differ in specific morphological and physiological features, resulting in a 
variety of ripening dates and consequently in early-, mid- and late- 
season cultivars (Ramos and Jones, 2018; Tomasi et al., 2011). Differ-
ences in the timing of flowering and veraison have been extensively 
studied across a wide range of vine cultivars (Parker et al., 2013). The 
main factor controlling the timing of vine phenology during the growing 
season is the temperature regime (Fernández-González et al., 2013; 
Fraga et al., 2016a; Malheiro et al., 2013). Usually, the impact of 

temperature on phenology is considered in the form of thermal accu-
mulation above a base temperature (i.e., heat requirements) between 
phenological intervals, often expressed as GDDs (Parker et al., 2011; 
Santibáñez et al., 2014; Verdugo-Vásquez et al., 2017). Thermal accu-
mulation has proven to be invaluable for viticultural research (Duchene 
and Schneider, 2005; Koufos et al., 2014); hence, the concept of GDD has 
been widely used in the literature. Various forms of thermal accumu-
lation have been used in relevant research, from simple Celsius degree 
summation to other more sophisticated forms that consider heat stress 
plants may exhibit beyond certain thresholds. Molitor et al. (2014) 
assessed the effectiveness of GDD models with variable complexity to 
describe vine phenology. They found that the more complex GDD 
models that apply thresholds for plant development stabilization and 
deceleration significantly improved the accuracy of the model. They 
resulted in a phenological model with a root mean squared error (RMSE) 
between 1.8 and 4.7 days. To establish a predictive model of pheno-
logical stages based on heat accumulation, Verdugo-Vásquez et al. 
(2017) found a strong correlation between the ELP scale and GDDs for 
various table grape cultivars. Their model gained RMSE between 4.4 and 
19.4 days. A similar model was used by Santibáñez et al. (2014) in Chile. 
The approach of Verdugo-Vásquez et al. (2017) and Santibáñez et al. 
(2014) is also mentioned in the literature as the Mitscherlich mono-
molecular equation model or Mitscherlich growth. It assumes that the 
phenological succession is asymptotic to a maximum. It was considered 
that the end phases of the annual cycle show a deceleration of the rate of 
development, and this is well expressed by the Mitscherlich equation. 

Vine phenological models based on the thermal accumulation, are 
usually calibrated using site specific phenological observations. Their 
main limitations are related to the fact that they are simplistic since they 
consider only thermal forcing, disregarding other climatic and bio-
physical factors of lesser importance (e.g. water availability or cultiva-
tion practices). Further uncertainties in their estimations arise from the 
thermal forcing estimation and from the quality of the phenological 
observations used for calibration. 

Climate change in relation to viticulture in Greece has been the 
subject of relatively few studies. Koufos et al. (2014) studied the harvest 
dates for eight indigenous wine-producing varieties across Greece and 
related them to climate data using regression modeling. They found a 
significant correlation between the recent trend of increasing tempera-
ture and the earlier onset of grape maturity. Furthermore, they estimate 
that small island viticulture would be more vulnerable to anticipated 
changes in temperatures compared to mainland regions. In another 
study, Lazoglou et al. (2018) assessed the impact of climate change on 
Greek territories by applying the Geoviticulture Multicriteria Climatic 
Classification system (Tonietto and Carbonneau, 2004) on the pro-
jections of a single regional climate model (RCM). Their findings suggest 
that increasing temperatures and drought will potentially affect all vine 
cultivation in Greece. Vineyards at higher altitudes will be positively 
affected, whereas in islands and coastal regions, there will be a negative 
impact. 

This study employed a phenological model to assess the impact of 
climate change on Vitis vinifera L., the “Sultana” cultivar. Covering an 
area of more than 270.000 ha, Sultana is the world’s most broadly used 
variety for table grapes and raisins and to a lesser extent for wines and 
spirits. It is mainly grown in the East Mediterranean, the Middle East and 
Central Asia (Greece, Turkey, Iran, Iraq, Afghanistan) and in other 
continents. Synonyms for this variety in different countries are Soulta-
nina, Kishmish, Soultanine, Thompson seedless, VIVC 12,051 (OIV, 
2017). The primary Sultana growing areas in Greece are Crete, Corinthia 
and Kavala. 

The study analyses observational vine phenology datasets that have 
never been used before in relevant projects. A phenological model was 
used for the first time to assess changes in growing stage timing under 
two scenarios of climate change, employing a multimodel RCM 
ensemble approach never used before in the eastern Mediterranean re-
gion. The results constitute a significant addition to the existing 
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knowledge on the potential climate change impact on sultana-growing 
regions with similar climate features. This work provides useful in-
sights that can aid adaptation strategies and agricultural system plan-
ning to support crop productivity optimization in view of adverse 
environmental changes. The specific objectives of this work are (a) to 
calibrate and validate a model for the simulation of phenophase suc-
cession in Sultana vines and (b) to use the model to quantify the changes 
in phenophase timing under two climate change pathway projections 
and two future periods. 

2. Materials and methods 

The approaches described by Santibáñez et al. (2014) and Verdu-
go-Vásquez et al. (2017) were employed to simulate the effects of 
climate change on the phenological sequence of the grapevine cv. Sul-
tana. These studies suggested a simple phenological model for table 
grape cultivars based on growing degree days (GDDs). The Santibáñez 
et al. (2014) formula is shown in Eq. (1). 

Phstage = Phfinal
(
1 − e− kGDD)p (1)  

where Phstage is the phenological stage on the ELP scale at any time 
during the life cycle, Phfinal represents the last modeled phenological 
stage according to the Mitscherlich equation model, k is the shape 
parameter, which is species dependent, p is the precocity number and 
GDD is the growing degree days. This formula has been used for various 
table grape cultivars, including Perlette, Red Globe and Thompson 
Seedless by Santibáñez et al. (2014) and Thompson, Crimson and Su-
perior Seedless, and Red Globe cultivars by Verdugo-Vásquez et al. 
(2017). Here, the parameters k and p were considered calibration pa-
rameters. Furthermore, as in Santibáñez et al. (2014), Phfinal was 
considered for optimization in the range of the existing literature values 
(Santibáñez et al., 2014; Verdugo-Vásquez et al., 2017), i.e., 38 to 42. 

In Crete, heatwaves during the summer often last long, and their 
adverse effects are intensified by hot south winds from Africa (Chart-
zoulakis, 2001), with an observed recent increasing trend (Kuglitsch 
et al., 2010). In light of these findings, the three-threshold temperature 
GDD definition of Molitor et al. (2014) was employed, as this approach 
takes into consideration that the forcing effect of temperature is limited 
at temperatures higher than the optimal temperature, affecting matu-
ration by causing adverse effects on the photosynthate translocation 
process (Mori et al., 2007). According to the three-parameter GDD 
approach, degree days are estimated according to three optimized 
temperature threshold values, namely, base, upper and heat threshold 
temperatures. Between the base and the upper temperature values, the 
forcing effect of temperature is linear, while when temperature crosses 
the upper threshold, the degree day gain remains stable, and when the 
temperature surpasses the heat threshold (see below), the degree day 
accumulation decays linearly. When the temperature exceeds a critical 
threshold, plant development stops completely, i.e., degree day sum is 
zeroed. The Molitor et al. (2014) formula for this estimation is shown in 
Eq. (2): 

DD [oC]= {

0 if t < a

(t − a) if a < t < b

(b − a) if t > b

((b − a) − (t − c)) if c < t < c + (b − a)

0 if t > c + (b − a)

(2)  

where t is the mean daily temperature, a is the lower threshold tem-
perature, b is the upper threshold temperature and c is the heat threshold 
temperature. The lower threshold has been defined in the literature as 
between 0 ◦C (Parker et al., 2013, 2011) and 10 ◦C (Santibáñez et al., 
2014; Verdugo-Vásquez et al., 2017). Molitor et al. (2014) developed a 
model to simulate all 26 phenological stages of the Müller-Thurgau vine 
cultivar. They optimized the three-parameter GDD model estimation by 
testing threshold temperatures between 3 ◦C and 7 ◦C for a, 15 ◦C and 
21 ◦C for b, 21 ◦C and 24 ◦C for c, concluding that the best threshold 
triplet is 5, 20 and 22 ◦C. These values are entirely experiment-specific 
but worth mentioning for rough comparison purposes, since in this 
study, these values were calibrated. 

A final parameter to be considered in the GDD estimation is the day 
of the year (DoY) beyond which the GDDs should be estimated. Garcia de 
Cortazar Atauri (2006) studied a model to simulate flowering and 
veraison, starting the GDD count on the 1st of April, while for a similar 
application, Parker et al. (2011, 2013) used the 1st of March. 

The above seven analyzed parameters, shown in Eqs. (1) and (2), 
were considered for optimization using the genetic algorithm technique. 
Genetic algorithm optimization is a stochastic, population-based algo-
rithm that searches randomly by mutation and crossover among popu-
lation members (Breitfeld and Shanno, 1995; Conn et al., 1991; 
Goldberg, 1989). The optimization was performed using MATLAB®. For 
the optimization, the parameter space took into consideration the 
literature values as they were discussed earlier but more relaxed to 
facilitate potential optimal values outside the existing literature. As an 
exception, the DoY parameter was considered outside the literature 
bounds, i.e., between the 1st and 20th of January to precede all cases of 
phenological observations, as well as potential budbreak dates under 
climate change. Table 1 shows the parameter range. 

Regarding the maturity stage, the ELP considers that scale 38 equals 
“Berries harvest-ripe (22◦Brix)” (Verdugo-Vásquez et al., 2017). 
Nevertheless, the Sultana cultivar for table grapes is considered 
harvest-ripe at 16 Brix or more (UNECE, 2017). Therefore, in this work, 
maturity was considered at ELP >= 37. Calibration of the parameters in 
(Table 1) was based on the observed phenological data described below. 
Half of the phenological data were reserved to validate the calibration 
procedure. The objective function used for the optimization was the root 
mean squared difference (RMSD) between the simulated and observed 
days of the year where each ELP stage occurred. The RMSD is shown in 
Eq. (3): 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

1

(
DoYOBS

ELP − DoYSIM
ELP

)2

n

√

(3)  

where DoYOBS
ELP is the day of the year that each of the n ELP stages was 

observed, and DoYSIM
ELP is the day of the year when the respective ELP 

stage was simulated. The calibration was based on the minimization of 
the RMSD. The optimization was performed using the Nelder–Mead 
optimization algorithm (Lagarias et al., 1998) without constraints. 

3. Case study 

3.1. The study area 

The study was conducted in the vine-growing area on the island of 
Crete, Greece, the fifth largest island in the Mediterranean. The island 
covers 8336 Km2. It is located at the southern limits of the Aegean Sea, at 

Table 1 
Parameter ranges implemented for genetic algorithm optimization.  

Parameter Parameters’ range 
Eq. (1), parameter Phfinal 38–42 
Eq. (1), parameter k 0.0010–0.0035 
Eq. (1), parameter p 1–5 
Eq. (2), parameter a 1–12 
Eq. (2), parameter b 15–25 
Eq. (2), parameter c 20–30 
DoY 1–20  
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a distance of approximately 160 km from mainland Greece. The climate 
on the island is Mediterranean – semiarid, featuring long and dry sum-
mers and wet and fairly cold winters. In the Koppen climate classifica-
tion (Kottek et al., 2006), a considerable part of Crete is categorized as 
having a Csa (hot-summer Mediterranean) climate. However, a few 
mountainous regions are categorized as having a Csb (warm-summer 
Mediterranean climate). These two climate categories are often collec-
tively referred to as "Mediterranean climate", with warm dry summers 
and cold (but above 0 ◦C) and wet winters. The elevation of the island 
varies considerably, between 0 and 2500 m above sea level (Fig. 1). The 
agricultural sector contributes ca. 8% to the island economy (EC, 2020). 
The average rainfall on the island is 878 mm/year, exhibiting a 
decreasing gradient from west to east. It ranges between 440 mm/year 
on the eastern part of the island and more than 2000 mm/year in the 
western mountainous regions (Grillakis et al., 2020). In the central parts 
of the island, where the majority of viticulture is located, the annual 
precipitation ranges from 500 mm/year in the coastal areas to more than 
700 mm/year further inland. 

According to the 2018 Corine Land Cover (CLC - Version 20), vine-
yards on Crete occupy 18,029 ha. Fig. 1 shows the spatial distribution of 
vine cultivation on the island. The vast majority of the vineyards are 
located in the central parts of the island in the Sub-Region of Heraklion 
(for exact positioning, see Table A1 of Appendix A). Vineyards are 
mainly located at elevations between the coastal areas and 600 m a.s.l. 

3.2. Available phenological data 

Phenological observations between 1984 and 2018 were obtained 
from the records of the Regional Center for Plant Protection and Phy-
tosanitary Control of Heraklion (a civil service of the Greek Ministry of 
Rural Development and Food). This dataset is comprised of more than 
2200 phenological observations, from the end of winter to full grape 
maturity, at 20 sites of Sultana vineyards across the Sub-Region of 
Heraklion (Fig. 1). Some locations were consistently monitored by the 
agency during this whole period, while others were monitored for only a 
few growing seasons. Details about the locations and the number of 
observations in each of them are shown in Appendix A - Table A1. The 
phenological observations were recorded using the Baggiolini Pheno-
logical scale (Baggiolini, 1952). For the purposes of this study, the 
Baggiolini scale was converted into the Eichhorn and Lorenz pheno-
logical scale using the conversion of Coombe (1995). Fig. 2 shows the 
varied intensity of observations recorded from 1984 to 2018. The 
increasing trend of the Sultana observations is because this cultivar 
replaced others due to of its high profitability as a table grape in the 
international market (Fig. 2a). Regarding the distribution of the obser-
vations during the growing season, the majority of the observations were 
recorded between the ELP5 stage (just after budburst) and fruit set, 
ELP27, i.e., the stages of fast phenology succession (Fig. 2b). 

In the present study, the phenological data of 35 years were allocated 

Fig. 1. Phenological observation sites. In purple are the Corine Land Cover 2018 areas occupied by vineyards. Circles indicate the observation sites detailed in 
Appendix A, Table A1. 

Fig. 2. Phenological observations between 1984 and 2018, (a) number of observations per year, and (b), distribution of observations on the Eichhorn and Lorenz 
scale, based on the discretization to major growth stages according to (Coombe, 1995). 
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randomly into two datasets for calibration and validation (Fig. 3). 

3.3. Available temperature data 

3.3.1. Observed temperature data 
To determine the temperature for the 20 vineyard sites, daily tem-

perature records from a total of 63 meteorological stations distributed 
across the whole of Crete were used. These stations consisted of (a) 14 
stations of the Hellenic Meteorological Service (HMS), with an average 
of 36 years of records, ranging between 11 and 64 years between 1955 
and 2019, (b) 10 stations of the National Agricultural Research Foun-
dation (NAGREF) with a uniform recording period starting in 2007 or 
2008 spanning 2019, and (c) 39 stations of the National Observatory of 
Athens (NΟА) with an average recording period of 8 years, ranging 
between 2.5 and 14 years, between 2006 and 2019. The NAGREF 
network is affiliated with the Greek Ministry of Rural Development and 
Food and is operated by the Regional Center for Plant Protection and 
Phytosanitary Control of Heraklion. The NOA network, although with a 
limited record timespan, was very useful for the purposes of this study, 
as it contributes to a complete climatology picture for different areas of 
Crete. The spatial distribution of the three meteorological station net-
works is shown in Fig. 4. All these datasets were used to estimate the 
temperature time series for the 20 sites of interest. However, the detailed 
methodology is beyond the scope of the study. Therefore, a brief 
description of the methodology is provided here, while additional in-
formation is included in Appendix B. As a first step, the temperature data 
from the 63 stations were filled in for any gaps between 1979 and 2019 
using the “single best estimator approach” (Eischeid et al., 2000; 
Hasanpour Kashani and Dinpashoh, 2012). An evaluation study of 
Shabalala et al. (2019) has shown that regression fill-in methods surpass 
other methods (arithmetic, averaging and various weighing approaches) 
for filling missing temperature values. Each missing value was filled in 
using a linear regression equation between the station with missing 
values and the best correlating station. When the best correlating station 
did not have a recorded temperature value for a specific date, the next 
most correlating station was used. 

After the gap filling process, the temperature timeseries of the 20 
phenology observation locations were estimated using multiple linear 

regression with interpolation of residuals. The general principles of this 
methodology are well established and used in the literature in 
acknowledged initiatives such as the E-OBS dataset (Cornes et al., 2018). 
This methodology is also recommended as a standard for the regional-
ization of climate information (Hennemuth et al., 2013). Generalized 
linear regression of the mean 31-day moving window, with the elevation 
and the distance from the seashore, provided the climatological tem-
perature for each of the 20 locations. Then, the residuals between the 
climatological temperature for each station point and the actual tem-
perature were estimated and interpolated to each point of interest. Six 
different interpolation methods were tested and validated, with the best 
results attained by inverse distance weighting. Details about the 
leave-one-out cross validation results are provided in Appendix B – 
Table B1 and Appendix B – Fig. B1. Finally, the residual temperature was 
added to the climatological temperature to provide the temperature 
estimation in each location of interest. The stations accessed in this 
study extend well beyond the spatial distribution of the 20 sites where 
the phenological observations were made, as the temperature database 
for the island of Crete was created to support research on viticulture as 
well as other crops spanning the whole island. 

3.3.2. Projected regional climate model temperatures 
Modeled daily temperature data were obtained from an ensemble of 

seven high-resolution (0.11◦, ~x223C12.5 km) RCMs participating in 
the Coordinated Regional Downscaling Experiment for Europe initiative 
Euro-CORDEX 0.11◦ or EUR-11 (Jacob et al., 2013) as listed in Appendix 
Table A2. Two future representative concentration pathways (RCPs), 
RCP4.5 and RCP8.5 (Moss et al., 2010; O’Neill et al., 2014), were 
considered. These concentration trajectories describe different possible 
future climate periods with different volumes of emitted greenhouse 
gasses (GHGs). The RCPs are labeled based on the projected change in 
the total solar irradiance in 2100. The RCP 4.5 is a mid-range climate 
change scenario that describes a stabilization in the radiative forcings by 
2100 (Wise et al., 2009) at approximately 4.5 W/m2 by employing a 
range of technologies and strategies for reducing greenhouse gas emis-
sions. RCP 8.5 is a high-end climate change scenario with radiative 
forcings increasing steadily until 2100 and beyond (Riahi et al., 2011), 
with an additional radiative forcing of 8.5 W/m2 in 2100. This scenario 

Fig. 3. Years of phenological observation data as allocated for calibration and validation.  

Fig. 4. Spatial distribution of the meteorological stations on the island of Crete. Red indicates the Hellenic Meteorological Service (HMS), blue indicates the NAGREF 
stations and green indicates the National Observatory of Athens network station (LG). Numbers following the initials for each station are part of the respective agency 
coding system. 

M.G. Grillakis et al.                                                                                                                                                                                                                            



Agricultural and Forest Meteorology 318 (2022) 108915

6

is referred to as ‘business as usual’, indicating that it may be the outcome 
if society does not take actions to reduce greenhouse gas emissions. A 
series of recent studies focusing on local or regional Mediterranean 
scales have used EUR-11 experiments for climate change impact as-
sessments (Grillakis et al., 2020; Mascaro et al., 2018; Molina et al., 
2020). The selection of the RCMs in the present study is similar to the 
selection performed in (Jacob et al., 2018) with a few modifications, i.e., 
exclusion of the HadGEM2-ES Global Climate Model (GCM)-driven 
simulation due to the 360 days-per-year calendar it uses, as well as the 
addition of three more model simulations. A complete list of the RCMs 
used is provided in Appendix Table A2. For the purposes of this study, 
the future temperatures of two forty-year periods, one in the near future 
(NF) (2021–2060) and one for the far future (FF) (2061–2100), were 
compared against the historical period of 1980–2019. 

Raw climate model data quite often experience biases in the mean 
and the annual distribution in comparison to observations (Christensen 
et al., 2008; Haerter et al., 2011). To resolve this issue, the daily RCM 
temperature data were adjusted for their biases using the multisegment 
statistical bias correction (MSBC) quantile mapping methodology orig-
inally presented in (Grillakis et al., 2013) with the addition of the 
trend-preserving module presented in (Grillakis et al., 2017). This 
module allows for the long-term trend preservation of the temperature. 
The method considers different segments on the cumulative density 

function space and uses quantile mapping in each of the segments for the 
adjustment. This methodology belongs to the so-called parametric 
quantile mapping techniques. Advantages and drawbacks related to 
quantile mapping are discussed in Maraun et al. (2010) and Themeßl 
et al. (2012). The methodology considers stationarity of the data for the 
adjustment, i.e., the adjustment established in a calibration period can 
be applied to any time period within or outside the calibration time 
period. The methodology results have been compared to other methods 
in the Bias Correction Intercomparison Project (BCIP) (Nikulin et al., 
2015). This methodology has already been previously used in the 
climate change impact study of (Nerantzaki et al., 2019) for the island of 
Crete. 

The RCM data were interpolated to the 20 locations where pheno-
logical data were available using the nearest neighbor technique. The 
data were then bias adjusted towards the temperature observations of 
the 20 locations. For the adjustment, the reference period of 1979 to 
2019 was used. As the EUR-11 historical simulation period ends in 2005, 
with 2006 onwards simulations to be forced by the RCP forcings, the 
bias adjustment was performed twice for the baseline period, once for 
the 1979–2005 complemented with the RCP4.5 between 2006 and 2019 
and once complemented with RCP8.5 between 2006 and 2019 (Ap-
pendix Fig. A1). 

4. Results 

4.1. RCM temperature data bias adjustment 

Temperature data were adjusted for biases, using as a reference the 
observed data from the period 1979–2019 (reference period). Fig. 5 
presents the mean annual temperature as an average across the 20 
examined locations before and after the adjustment. The RCM data 
exhibited a 1.7 ◦C–2 ◦C mean difference in the reference period 
(depending on the pathway to replenish the 2006–2019 data), also 
shown in Table 2. Raw and adjusted data exhibited a similar long-term 
trend, as expected by the trend-preserving adjustment methodology 
used. The RCM data, as shown in Fig. 5, exhibited a lower variation in 
comparison to the observations because of the 7 RCM data averaging. 

Seasonal temperature analysis on the adjusted data revealed a 
nonuniform temperature change in the future projections (Fig. 6). The 
temperature increase is more intense in spring to summer months. In 
almost all analyzed periods and climate change scenarios, December 
was the month with the least warming, while June was the month with 
the highest warming. Specifically, for the near future period, RCP4.5 

Fig. 5. Mean annual temperatures as an average across the 20 examined locations. The black line shows the mean annual observed temperatures, the dashed yellow 
line shows the raw RCP4.5, the dashed orange line shows the raw RCP8.5, the solid yellow line shows the bias-corrected RCP4.5, and the solid orange line shows the 
bias-corrected RCP8.5. 

Table 2 
Average, slope of the annual mean data (as shown in Fig. 5) and standard de-
viation of the daily values for the observed and EUR-11 CORDEX RCM data 
before and after the adjustment.     

Average 
[◦C] 

Slope 
[◦C/year] 

Standard 
Deviation 
[◦C]   

Observed 17.2 0.035 6.2 
RAW RCP4.5 1979–2019 15.5 0.030 6.1   

2021–2060 16.5 0.024 6.2   
2061–2100 17.2 0.011 6.2  

RCP8.5 1979–2019 15.2 0.028 6.1   
2021–2060 16.8 0.041 6.3   
2061–2100 18.6 0.058 6.4 

CORRECTED RCP4.5 1979–2019 17.2 0.030 6.1   
2021–2060 18.2 0.024 6.2   
2061–2100 18.9 0.011 6.3  

RCP8.5 1979–2019 17.2 0.028 6.1   
2021–2060 18.8 0.041 6.4   
2061–2100 20.4 0.058 6.5  
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shows an increase between 0.6 ◦C (November) and 1.3 ◦C (June), while 
RCP8.5 shows a warming between 0.7 ◦C (December) and 1.3 ◦C (June). 
The respective changes for the far future period were projected to be 
between 1.3 ◦C (December) and 2 ◦C (June) for RCP4.5, while for 
RCP8.5, the respective increase is projected between 2.7 ◦C (January) 
and 3.8 ◦C (June). 

4.2. Calibration and validation of the phenological model 

The calibration procedure produced the optimized parameters 
shown in Table 3. In Fig. 7, the RMSD between the observed and cali-
brated ELP stages is shown as a function of different pairs of seven 
calibrated parameters. In a few couples of the parameters, there was a 
clear pattern between their variation and the RMSD, the clearest 
example being the variation of parameters a and k. Nevertheless, most 
couples present a nearly random RMSD pattern. This confirmed that 
none of the 7 parameters optimized against the RMSD were redundant. 

The optimization procedure provided an overall RMSD of 8.7 days 

and an RMSD of 2.77 on the ELP scale. The respective validation error, 
estimated on the validation data, equaled RMSD 8.6 days and 2.79 ELP 
scale units. The R2 values between the observations and the simulation 
were 0.93 and 0.92, respectively. In Table 4, the RMSD for the different 
developmental stages was provided for the calibration, validation, and 
combined data, both in time difference and ELP units. As a result, the 
model exhibited good overall performance. The model showed the 
lowest RMSD for the flowering and maturing stages, while the highest 
difference was found for the shoot development stages. The maturing 
stages (ELP 37 or higher) show an overall RMSD of 6.6 days. In Fig. 8, 
the simulation results for four of the studied locations are shown, for 
2017 that was included in the calibration and for 2018 that was included 
in the validation procedure. The RMSD results shown in Table 4 are 
similar, indicating the suitability of the model for use with other data. A 
scatter plot of the observed and the simulated day of occurrence for each 
phenological observation is provided in the Appendix, Fig. A2. Mean 
Absolute Error (MAE) and the Agreement Index are also provided. A 
sensitivity analysis was performed to validate the optimal calibration 
point of the genetic algorithm (Appendix Fig. A3). 

4.3. Effects of future temperatures on the growing degree day 
accumulation 

Increasing temperatures are expected to affect changes in the 
growing degree days accumulated during the growing season. In Fig. 9a, 
the average simulated temperatures from February to September are 
shown for the near and far future periods. The effect of the temperature 
change was expressed in the accumulated GDDs, as shown in Fig. 9b. In 
the near future, GDD accumulation will be nearly identical between the 

Fig. 6. Temperature seasonality as an average for each study period (reference, near future, far future), (a) for the RCP4.5 scenario and (b) for the RCP8.5 scenario. 
Change in temperature seasonality for the two future periods, (c) for RCP4.5 and (d) for RCP8.5. 

Table 3 
Optimized values for the analyzed parameters.  

Parameter Optimized value 
Eq. (1), parameter Phfinal 40 
Eq. (1), parameter k 0.0015 
Eq. (1), parameter p 3.78 
Eq. (2), parameter a 2.56 
Eq. (2), parameter b 21.63 
Eq. (2), parameter c 23.58 
DoY 19  
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two pathways, RCP4.5 and RCP8.5, while in the far future, the two 
pathways will be well discernible. RCP4.5 was close to the near future 
GDD accumulation, while RCP8.5 shows faster GDD accumulation. In 
both pathways and periods, GDD accumulation appears to converge to 
similar values in early August. These different patterns of GDD accu-
mulation are also shown in Fig. 9c, where the average degree day gain 
was shown for each month. For the historical period, degree day accu-
mulation increases until June. Thereafter, it remained constant due to 
the increase in temperatures to values beyond the level of linear increase 
(calibrated at 21.6 ◦C) or the heat threshold (calibrated at 23.6 ◦C), 
beyond which plant development slows down. For the projection pe-
riods, the degree day accumulation in the spring was enhanced by the 
increasing temperatures until June (May for far future for RCP8.5). 

During the summer months, a significant slowdown of GDD accumula-
tion was observed. 

4.4. Future temperature effects on vine phenology 

The calibrated phenological model was used to simulate the 
phenological stages of two future periods under the two RCP pathways. 
In Fig. 10, the representation of five phenological periods is shown for 
the historical and examined future periods and pathways. In the near 
future, the start of budburst was expected to be advanced by 6 and 7 
days for RCP4.5 and RCP8.5, respectively. The end of the ripening 
period was expected to be advanced by 3 days for both pathways. For the 
far future period, the projections revealed a significant advancement for 
the start of budburst by 10 and 16 days for RCP4.5 and RCP8.5, 
respectively. The end of the ripening period was expected to be 
advanced by 4 and 5 days, respectively. Table 5 shows the DoY where 
each phenological phase starts and ends, the changes for NF and FF 
periods and the two pathways examined in relation to the historical 
period, and the length of each phenophase period. These results indicate 
that while there was an overall advancement in the phenophase start 
and end between budburst and berry development, their total length 
was not expected to change. The ripening phase exhibits an increasing 
trend by up to 4 days for the near future pathways and by 6 to 12 days for 
the far future for RCP4.5 and RCP8.5. 

Fig. 7. RMSD of the calibration procedure as a function of different pairs of calibrated parameters. Red crosses represent the optimized values.  

Table 4 
Calibration, validation and all period RMSD for different development stages in 
days and, in parentheses, ELP scale units.  

Stage (ELP scale) RMSD 
calibration 

RMSD 
validation 

Overall 
RMSD 

All stages (4–38) 8.7 (2.77) 8.6 (2.79) 8.7 (2.78) 
Budbreak (4–5) 8.49 (1.58) 8.83 (1.57) 8.67 (1.58) 
Shoot development 

(5–18) 
10.03 (3.34) 10.57 (3.35) 10.33 (3.35) 

Flowering (19–26) 5.43 (1.81) 6.66 (2.17) 6.19 (2.03) 
Berry development 

(27–33) 
7.83 (1.95) 7.07 (1.71) 7.48 (1.84) 

Ripening (34–38) 11.56 (1.02) 10.28 (0.74) 10.75 (0.84) 
Maturing (>37) 6.60 (0.66) 6.83 (0.57) 6.75 (0.57)  
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5. Discussion 

In this study, a phenological model was calibrated and validated 
based on long records of temperatures and phenological observations of 
the grapevine cultivar “Sultana”. The model was used to estimate future 
shifts in grapevine phenological stages under two climate pathways and 
two future periods. 

The calibrated phenology model indicated that there is a strong 
nonlinear correlation between the ELP phenological scale and the 
accumulated GDDs estimated by the three-parameter model, i.e., base, 
upper and heat threshold temperatures. The calibration-validation RMS 
difference was estimated between 5.4 and 11.5 days, depending on the 
phenological stage, with the model best fitting in the flowering and 

maturing stage prediction. The average RMSD was calculated at 8.6 
days, close to the estimated advancement in the near future phenology 
shifts for both pathways. These values were similar to those reported by 
Zapata et al. (2015), who obtained an RMSD ranging between 6.1 and 
10.8 days for the grapevine cultivars Merlot, Cabernet Sauvignon and 
Chardonnay. The aforementioned RMSD range found in this study was 
lower than that found by Verdugo-Vásquez et al. (2017), who reported 
RMSD values between 4.4 and 19.4 days for table grapes, although their 
model initiated the prediction at budbreak (i.e., a fixed phenological 
event) instead of a fixed day of the year as a start counting GDDs (the 
case in this study). Parker et al. (2011) used a fixed DoY (60th) to build a 
multicultivar model that predicts the stages from flowering to veraison. 
Their results indicated RMS differences between 1.8 and 4.7 days, 

Fig. 8. Example of calibration and validation results from four locations. The 2017 growing season (upper) contributed to the calibration data, and the 2018 season 
(lower) contributed to the validation data. Red lines and blue circles correspond to the simulated and observed ELP stages, respectively. 

Fig. 9. Expected changes in growing degree day accumulation due to increasing temperatures. (a) Mean daily temperature across all RCMs and study locations, from 
February to September. Different colors depict the different scenarios and periods studied. The shaded areas depict the standard deviation range. (b) The same as (a) 
but for the GDD accumulation. (c) The mean daily degree day accumulation for each month. NF = near future, FF = far future, STD = standard deviation. 
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depending on the cultivar tested. The key difference from the model 
developed in the present work was that this study approximates all the 
phenology stages from budbreak to maturity, which widens its useful-
ness, although it has a cost in the fitting performance. According to 
Molitor et al. (2014), the use of a starting date based on budbreak makes 
the model more robust. It is still worth noting that the results of this 
study should be interpreted with caution regarding the near future 
projections, as the estimated changes in the phenology timing are, 
roughly, at the same range as the uncertainty related to the model 
calibration error. 

Fig. 10. Simulated phenological phases in the historical and two future projected periods for the two pathways studied. On the right side of the figure, the advance 
(in days) at the start of the budburst and at the end of the maturity stage is shown. 

Table 5 
Changes in the start and end of the different phenophases, depicted as the day of the year, and phenophase length. These results were calculated as the average of the 
different RCM model results. NF = Near Future, FF = Far Future.  

Stage: Budburst Shoot development Flowering Berry Development Ripening 
DoY From To From To From To From To From To 
Historical Period 86 92 93 131 135 154 158 184 192 240 
NF RCP4.5 80 (− 6) 86 (− 6) 87 (− 6) 124 (− 7) 128 (− 7) 148 (− 6) 152 (− 6) 178 (− 6) 186 (− 6) 237 (− 3) 

RCP8.5 79 (− 7) 85 (− 7) 86 (− 7) 123 (− 8) 127 (− 8) 146 (− 8) 151 (− 7) 177 (− 7) 185 (− 7) 237 (− 3) 
FF RCP4.5 76 (− 10) 82 (− 10) 83 (− 10) 120 (− 11) 124 (− 11) 143 (− 11) 148 (− 10) 174 (− 10) 182 (− 10) 236 (− 4) 

RCP8.5 70 (− 16) 75 (− 17) 76 (− 17) 112 (− 19) 115 (− 20) 135 (− 19) 139 (− 19) 167 (− 17) 175 (− 17) 235 (− 5) 
Phenophase length 
Historical Period 6 38 19 26 48 
NF RCP4.5 6 37 20 26 51 

RCP8.5 6 37 19 26 52 
FF RCP4.5 6 37 19 26 54 

RCP8.5 5 36 20 28 60  

Table A1 
Observation locations. Geographical data and numbers of phenological obser-
vations. HTRS: Hellenic Terrestrial Reference System.   

Location 
name 

HTRS X HTRS Y Elevation Number of 
observations 

1 Gazi 595,814 3,908,818 25.5 500 
2 Voutes 596,213 3,903,089 234 310 
3 Kasteli 621,822 3,896,907 340 188 
4 Pentamodi 593,401 3,901,108 327 118 
5 Pyrgou 592,723 3,898,265 400 157 
6 Dafnes 596,134 3,897,813 349 280 
7 Profitis Ilias 600,088 3,897,124 350 15 
8 Ano Asites 591,022 3,894,778 480 47 
9 Gkagkales 592,173 3,880,095 245 32 
10 Agia Varvara 591,020 3,888,702 612 122 
11 Kapariana 581,285 3,877,044 65 122 
12 Vagionia 591,686 3,873,392 245 44 
13 Episkopi 612,613 3,902,295 269 15 
14 Mesochorio 610,222 3,875,329 307 87 
15 Kasteliana 614,644 3,877,229 316 41 
16 Ligortinos 606,878 3,882,217 402 27 
17 Damasta 583,893 3,912,628 420 14 
18 Alagni 611,310 3,893,617 422 85 
19 Choumeri 613,833 3,891,677 355 15 
20 Archanes 605,828 3,900,673 367 23  

Table A2 
List of the EURO CORDEX Regional Climate Models (RCMs), their driving Global 
Climate Models (GCMs) used in this study. Also, key references are provided.  

Driving GCM RCM Key refs. 
EC-EARTH KNMI-RACMO22E Van Meijgaard et al. (2012) 
EC-EARTH SMHI-RCA4 Kjellström et al. (2016) 
IPSL-CM5A-MR IPSL-INERIS-WRF331F Skamarock and Klemp (2008) 
MPI-ESM-LR CSC-REMO Jacob et al. (2012) 
CNRM-CM5 SMHI-RCA4 Kjellström et al. (2016) 
EC-EARTH DMI-HIRHAM5 Christensen et al. (2007) 
MPI-ESM-LR SMHI-RCA4 Kjellström et al. (2016)  

M.G. Grillakis et al.                                                                                                                                                                                                                            



Agricultural and Forest Meteorology 318 (2022) 108915

11

Our findings show that veraison, the onset of the ripening process, is 
predicted to be advanced by 6–17 days at all sites (Table 5), with the 
mean temperature during the 51–60 days following veraison (within 
July and August) being projected to increase by 3.8 ◦C. Changes in the 
phenology of several grapevine cultivars have also been found by other 
researchers during recent decades and under future climate conditions 
in connection to temperature increases. Jones and colleagues (2005) 
found that budbreak, flowering and veraison stages have advanced 
significantly over the last 50 years. Gate and Brisson (2010) estimated 
that flowering will advance by 8 days and veraison by 10 days in France 
for every Celsius temperature degree increase. García de Cortázar-Atauri 
and colleagues (2017) found a change in all phenological stages, by 15 
to 30 days depending on the pathway, the cultivar and the region, up to 
2100. Fraga and colleagues (2016b) reported that in northern Italy, 
phenological events under the RCP8.5 pathway could occur more than 
30 days earlier. The results of these studies indicate an advancement in 
grapevine key phenological stages in the last few decades. They also 

indicate that an increasing trend in this advancement is expected in the 
future, according to projected warming scenarios. 

The findings of this study indicate that while future temperatures are 
expected to increase more in the summer months (Figs. 6 and 9), it is 
shown that the GDD accumulation is stronger in the spring, with a de-
gree day accumulation slowdown in the summer (Fig. 9), especially in 
the far future period of RCP8.5. The projected changes report a stronger 
trend for advancement of the early phenological stages, whereas this 
advancement is decreased in the later stages near maturation (Table 5). 
It may be worth investigating whether any lengthening of the cultivation 
period is likely to have significant implications in cropping systems. 
More inputs may be required, e.g., for plant protection and irrigation. 
These factors may have an impact on the profit margins and hence on the 
competitiveness of the cultivar grown in an area. On the other hand, a 
potential earlier production reaching the markets could compensate for 
the economic loss from higher production costs. 

An issue to be addressed is the uneven distribution of the observa-
tions through the growing season and through the years for which the 
model was calibrated and validated. The uneven distribution of 
phenological observations may have induced a bias in the phenological 
model that may partly explain the differences in the RMS for the 
different phenological stages (Table 4). Other systematic changes that 
were not taken into consideration, as there were no records, are culti-
vation practices (e.g., irrigation, fertilization, pruning). Additionally, no 
data were available on the vine training systems and different rootstock- 
scion combinations. Another limitation of this study is that the pheno-
logical model considers only the temperature parameter, while there is 
significant literature that highlights the importance of other climatic 
parameters, such as precipitation. Additionally, the model validation 
was subject to the accuracy of the temperature and phenology 

Table A3 
Calibration (CAL), validation (VAL) and total (ALL) period Mean Absolute Error 
(MAE) and Agreement Index for each phenophase and for the entire cultivation 
season.  

PHENOPHASES MAE AGREEMENT INDEX 
CAL VAL ALL CAL VAL ALL 

All stages (4–38) 6.91 7.47 7.20 0.82 0.79 0.81 
Budbreak (4–5) 8.38 8.70 8.56 0.89 0.88 0.88 
Shoot development (5–18) 4.54 5.12 4.89 0.92 0.88 0.90 
Flowering (19–26) 6.32 5.51 5.94 0.91 0.89 0.90 
Berry development (27–33) 10.36 8.66 9.25 0.81 0.88 0.86 
Ripening (34–38) 7.48 7.62 7.56 0.98 0.98 0.98  

Fig. A1. Schematic representation of the different period definitions used in the study. The reference period coincides with the temperature data observations period. 
The Regional Climate Model (RCM) simulations under the Representative Concentrations Pathways (RCPs) 4.5 and 8.5 are also shown. The Near and Far Future 
periods of the projections are referred as NF and FF, respectively. 

Fig. A2. Scatter plot between the day of the year that each phenology observation was recorded and the respective simulated day of the year, for the calibration, 
validation and the entire dataset. 
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Fig. A3. Sensitivity analysis of the 7 optimized variables. For each variable tested, the other six variables were kept constant to the genetic algorithm’s optimized 
value (shown in the table in the top right corner). 

Fig. B1. Comparison of different interpolation methods. Box plots encompass the results among the different stations. The different box plots provide information for 
Triangulation-based linear interpolation (blue), Triangulation-based nearest neighbor interpolation (orange), Triangulation-based natural neighbor interpolation 
(gray), cubic interpolation (yellow), Biharmonic spline interpolation (pale blue) and inverse distance weighting (green), respectively. Panel (a) Root mean square 
error, (b) the difference between the observations and the estimation (estimation - observations), (c) the standard deviation of the difference and (d) the ratio of the 
simulated over the observed variance. 
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observations. Finally, the potential effects of changes in CO2 concen-
tration or potential impacts from known phytotoxic increases in tropo-
spheric ozone concentrations were not taken into consideration. 

During grape ripening, berries undergo major changes in acidity, 
anthocyanin accumulation and terpenol formation (Duchêne et al., 
2012). It is generally accepted that the highest grape quality is obtained 
when grapes ripen neither too early nor too late in the season and that 
elevated temperatures can impair grape quality parameters. Since the 
maturation of grapes is likely to occur under increasing temperatures in 
the future due to projected advances in phenology, vine growing regions 
are expected to face abscission of grape berries, partial or total failure of 
flavor ripening, skin discoloration and absence of floral aromas (Jones 
et al., 2005). The model could be a helpful tool in designing adaptable 
management strategies against the effects of climate change or could 
potentially be used, along with seasonal temperature forecasts, for 
agricultural management or grape market forecasts. Seasonal forecasts 
have already shown their value for a 1- to 3-month range for the island 

of Crete (Grillakis et al., 2018). 
The model developed in this study obtained satisfactory results in 

predicting the phenological phases of the Sultana cultivar. The best es-
timates were obtained for the prediction of maturity timing. Τhe 
considerable shifts in grapevine timing reported in this study could alter 
the suitability of many vineyard regions today for profitable grape 
production, in other areas of Greece and in other countries where Sul-
tana is grown as well as for other grapevine cultivars using a similar 
approach. A need for adaptations arises, e.g., the replacement of current 
cultivars with others of a later ripening period and/or a spatial shift of 
grapevine cultivation to cooler areas. In line with the findings of this and 
other studies mentioned above, appropriate adaptation strategies are 
already under evaluation. In this context, the combination of grapevine 
phenological models with climate change projections constitutes a 
valuable tool for restructuring sustainable viticultural production 
systems. 

6. Conclusions 

The application of the model developed in this study to future pro-
jected climate conditions produced three significant findings: (1) the 
expected earlier emergence of the different phenophases, from budbreak 
to berry development, in grapevines, (2) the lengthening of the ripening 
period and (3) there were no noticeable changes in the duration of the 
cultivation period, although there was a significant advancement in the 

Fig. B2. Symmetrical matrix with the correlation coefficients [R2] between 
each pair of stations. Empty cells indicate station pairs with less than two years 
of concurrent temperature recordings. 

Fig. B3. Average temperature gradient per 100 m for each calendar month for the island of Crete.  

Table B1 
Average results frοm all stations.   

linear nearest natural cubic v4 IDW 
RMSE 1.35 1.54 1.29 1.42 1.58 1.39 
Difference 0.060 − 0.058 0.080 − 0.005 − 0.026 0.001 
STD of the 

difference 
1.04 1.20 1.02 1.09 1.23 1.16 

Fraction of 
variance 

0.98 1.00 0.98 0.99 1.01 0.96  
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day of the year for the harvest. These conclusions lend support to current 
efforts for climate change adaptation strategies for viticulture. 
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Table A1–Table A3 
Fig. A1–Fig. A3. 

Appendix section B 

(a) Temporal fill-in at a station level 

Initially, all the stations were tested for their correlation in the 
temperature in the form of R2. A threshold of at least two years of 
concurrent temperature recordings was applied for the R2 estimation. 
Wherever the available concurrent recordings between two stations 
were less than 2 years, the correlation was omitted. The correlations are 
shown in Fig. B2. 

Each missing value in each station is filled in using a unique linear 
interpolation equation between the missing value station and the best 
correlating one. If the best correlating station does not have a temper-
ature value for the specific missing value date, the next most correlating 
station is used. 

(b) Spatial interpolation at the 20 sites of interest 

After the temporal fill-in, the spatial interpolation at the 20 sites of 
interest was performed using the linear regression with interpolation of 
residuals (Cornes et al., 2018; Hennemuth et al., 2013). Due to the high 
orography of the island, the correlation of the temperature and the 
altitude was estimated at a moving 31-day window for the 365 calendar 
days of the year. For illustration purposes, Fig. B3 shows the 
temperature-elevation gradient for each calendar month. 

Additionally, a range of - other than elevation - temperature 
regression predictors were assessed for their ability to correlate to the 
temperature. Linear regression models were constructed between tem-
perature and latitude, longitude, distance from the shore and terrain 
slope. It was found that beyond the elevation, only the distance from the 
shore provided a significant correlation at a 95% confidence level. 
Hence, only elevation and the distance from the shoreline were used in 
the Generalized linear regression model to obtain the correlation be-
tween elevation, distance from the shore and the moving 31-day win-
dow temperature as a predictant. It is worth mentioning that the 
combined use of those two variables in the regression model provided 
smaller Akaike’s Information Criterion (AIC) comparing to the AIC of a 
linear model using each individual variable, indicating that their 

combination increases the information that the linear model provides, 
with a reasonable tradeoff increase of the model complexity. The 
established linear equations for each calendar day were used to estimate 
the climatological temperature for each one of the 20 locations of in-
terest, using their elevation and their distance from the shore. 

(c) Temperature residual interpolations 

Following the methods of Cornes et al. (2018) and Hennemuth et al. 
(2013), a series of different interpolation methods were assessed for the 
residual interpolation. These methods were tested and validated using a 
Leave-one-out-cross validation (LOOC). The methods tested were 
Triangulation-based linear interpolation, Triangulation-based nearest 
neighbor interpolation, Triangulation-based natural neighbor interpo-
lation, cubic interpolation, Biharmonic spline interpolation and inverse 
distance weighting. Comparison of the different methods is provided in 
the Fig. B4. Each box plot encompasses the results for the different 
stations for the leave one out test. Hence all stations were left once 
outside as a validation while the estimation of the temperature time 
series was repeated using all the these stations. The results are shown for 
Triangulation-based linear interpolation, Triangulation-based nearest 
neighbor interpolation, Triangulation-based natural neighbor interpo-
lation, cubic interpolation, Biharmonic spline interpolation and inverse 
distance weighting (IDW), respectively. Linear triangulation, natural 
neighbor triangulation and cubic interpolation could not estimate the 
leave one out test for the stations that were not included in triangle 
spatially, hence 9 stations estimations were not included in the results, 
while also this was a barrier on selecting those methods for the spatial 
interpolation. The mean values of the above box plots are also shown in 
Table B1. Among the three methods that can spatially extrapolate the 
residuals, the best performing was the IDW, which presented the lowest 
RMSE, average difference and standard deviation of the difference. The 
results are comparable with those of datasets built for other countries, e. 
g. the STEAD dataset for Spain (Serrano-Notivoli et al., 2019). 
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Arbona, V., 2019. Facing climate change: biotechnology of iconic Mediterranean 
woody crops. Front. Plant Sci. 10. 

Doupis, G., Chartzoulakis, K.S., Taskos, D., Patakas, A., 2020. The effects of drought and 
lemental UV-B radiation on physiological and biochemical traits of the grapevine 
cultivar “Soultanina. OENO One 54, 687–698. https://doi.org/10.20870/OENO- 
ONE.2020.54.4.3581. 
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